добавить в избранное
сделать стартовой
Главная страница Обратная связь Карта сайта
Поиск по сайту:
ПАНЕЛЬ УПРАВЛЕНИЯ
Навигация по сайту
Новости ресурса
Естественные науки
-- Физика, астрономия
---- Механика
---- Молекулярная физика
---- Электричество и магнетизм
---- Оптика
---- Астрономия
-- Химия
---- Неорганическая химия
---- Аналитическая химия
---- Органическая химия
---- Физколлоидная химия
---- Фармацевтическая химия
---- Химическая технология
-- Биология, экология
-- География, науки о Земле
-- Другие естественные науки
Математическая литература
-- Арифметика, алгебра, геометрия
-- Линейная алгебра
-- Аналитическая геометрия
-- Математический анализ
-- Теория вероятности и матстатистика
-- Дискретная математика
-- Диф. уравнения
Медицина
Техническая литература
-- Компьютерная литература
---- Программирование
---- Безопасность
---- Сетевые технологии
---- Дизайн и графика
---- Web-технологии<;/a>
---- 
Операционные системы
---- Другие
-- Элекроника,схемотехника
Гуманитарные науки
-- Общественные науки
---- Философия
---- История
---- Психология
---- Религия
---- Культурология
Языкознание и литературоведение
Экономические науки
Хобби, домострой
-- Рукоделие
-- Филателия,нумизматика
-- Кулинария
-- Ремёсла
-- Охота, рыбалка
Научно-популярная литература
Спорт
Журналы

Энциклопедии
Учебники
Сельское хозяйство
Аудиокниги
Другие


Рекомендуем.


Календарь
«    Апрель 2018    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
30 
Наш опрос
Вы еще вернетесь на наш ресурс???

Друзья проекта


Счётчики





Рекомендуем.

Архив новостей
Апрель 2018 (46)
Март 2018 (60)
Февраль 2018 (110)
Январь 2018 (108)
Декабрь 2017 (55)
Ноябрь 2017 (56)
» » » Введение в математическую логику



Введение в математическую логику
 
Введение в математическую логику

Введение в математическую логику — В книге дается доступное для начинающего читателя и достаточно полное изложение основных разделов современной математической логики и многих ее приложений. Наряду с такими разделами, как логика высказываний, исчисление предикатов, формальная арифметика и теория алгоритмов, в ней освещены также теория моделей и аксиоматическая теория множеств.
Следует однако отметить, что в этой книге по существу не затрагиваются интуиционистское и конструктивное направления математической логики. Изложение материала в книге ясное и лаконичное. Основной текст перемежается с большим числом примеров и упражнений. В упражнения автор вынес также некоторые результаты, используемые затем в основном тексте. Это, наряду с лаконичностью изложения, способствовало сокращению размеров книги при весьма обширном содержании. Переводчик и редактор перевода позволили себе без специальных оговорок и примечаний исправить ряд неточностей и опечаток, имевшихся в оригинале, а также привести терминологию и обозначения в соответствие с принятыми в русской литературе. Книгу Э. Мендельсона можно рекомендовать в качестве пособия не только студентам и аспирантам, специализирующимся по математической логике, но также всякому, кто захочет начать систематическое изучение этого предмета.

Название: Введение в математическую логику
Автор: Эллиот Мендельсон
Издательство: Наука
Год: 1976
Страниц: 320
Формат: PDF
Размер: 21,1 Мб
Качество: Отличное
Язык: Русский

Содержание:

От редактора перевода
Предисловие
Введение
Глава 1. Исчисление высказываний
§ 1. Пропозициональные связки. Истинностные таблицы
§ 2. Тавтологии
§ 3. Полные системы связок
§ 4. Система аксиом для исчисления высказываний
§ 5. Независимость. Многозначные логики
§ 6. Другие аксиоматизации
Глава 2. Теории первого порядка
§ 1. Кванторы
§ 2. Интерпретации. Выполнимость и истинность. Модели
§ 3. Теории первого порядка
§ 4. Свойства теорий первого порядка
§ 5. Теоремы о полноте
§ 6. Некоторые дополнительные метатеоремы
§ 7. Правило С
§ 8. Теории первого порядка с равенством
§ 9. Введение новых функциональных букв и предметных констант
§ 10. Предваренные нормальные формы
§ 11. Изоморфизм интерпретаций. Категоричность теорий
§ 12. Обобщенные теории первого порядка. Полнота и разреши­мость
Глава 3. Формальная арифметика
§ 1. Система аксиом
§ 2. Арифметические функции и отношения
§ 3. Примитивно рекурсивные и рекурсивные функции
§ 4. Арифметизация. Гёделевы номера
§ 5. Теорема Гёделя для теории S
§ 6. Рекурсивная неразрешимость. Теорема Тарского. Система
Робинсона
Глава 4. Аксиоматическая теория множеств
§ 1. Система аксиом
§ 2. Порядковые числа
§ 3. Равномощность. Конечные и счетные множества
§ 4. Теорема Хартогса. Начальные порядковые числа. Арифметика порядковых чисел
§ 5. Аксиома выбора. Аксиома ограничения
Глава 5. Эффективная вычислимость
§ 1. Нормальные алгорифмы Маркова
§ 2. Алгорифмы Тьюринга
§ 3. Вычислимость по Эрбрану-Гёделю. Рекурсивно перечислимые множества
§ 4. Неразрешимые проблемы
Дополнение. Доказательство непротиворечивости формальной арифметики
Литература
Алфавитный указатель
Символы и обозначения

Скачать Введение в математическую логику





 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Другие новости по теме:



 

Информация
  Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.  

Популярные статьи
» Серия "Портал" (25 кн ...
» Энциклопедия суеверий
» Международная фармакопе ...
» Цифровая фотография. Ле ...
» Радов Анатолий. Ящер (2 ...
» Cosmopolitan Психология ...
» Wordpress and Flash 10x ...
» "Автолегенды" СССР #3 ...
» Угринович Д.М. - Психол ...
» Лучшие блюда из печени, ...
Сейчас на сайте:
Всего на сайте: 13
Гостей: 4
Пользователи: - отсутствуют
Роботы: robot Bot, robot Bot, crawl Bot, Yandex Bot, robot Bot, Yandex Bot, Yandex Bot, robot Bot, robot Bot

20-ка посетителей: - отсутствуют


Реклама
Внимание.
Данный ресурс является самообновляемой библиотекой, информацию в которую добавляют пользователи, согласные с тем, что они не нарушают авторских прав. На данном сайте представлены исключительно ссылки на другие ресурсы.
Любое размещение информации, нарушающее авторское право будет незамедлительно удалено.
Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её.

Рекомендуем:

   
Главная | Регистрация | Добавить новость | Новое на сайте | Статистика | Наш форум | Правила

Copyright © 2008 - 2016 Читатель.info